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Matrices and Systems of equations

Systems of linear equations

Definition 1 (a linear equation in n unknowns) A linear equation in n unknowns x1, x2, ..., xn
is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b

where a1, a2, ..., an and b are real numbers.

Definition 2 (a linear system of m equations in n unknowns) A linear system of m
equations in n unknowns x1, x2, ..., xn is a system of equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

where aij’s and bi’s are real numbers

Terminology 1 (m× n system) By an m×n system, we mean a linear system of m equa-
tions in n unknowns

Terminology 2 Here three definitions:

• By a solution of an m× n system, we mean n numbers x1, x2, ..., xn that satisfies all m
equations.

• if a linear system has no solurion, we say that it is inconsistent

• if it has at least one solution, we say that is consistent

• The set of all solutions is called the solution set

Definition 3 (Equivalent) Two systems of equations involving the same variables are said
to be equivalent if they have the same solution set
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Homogeneous systems

Definition 4 (Homogeneous systems) An m× n linear system of the form

a11x1 + a12x2 + · · ·+ x1nxn = 0

Remark! Every m× n homogeneous system has the trivial solution x1 = x2 = · · · = xn = 0

Theorem 1 An m× n homogeneous system has a nontrivial solution if n > m

Matrices

Definition 5 (square matrix) A matrix is said to be square if it has the same number of
rows and columns.

Definition 6 (coefficient matrix, augmented matrix) Consider a linear system of m
equations in n unknowns x1, x2, ..., xn

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

we associate two matrices to such a system:

Coefficient matrix:


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

Augmented matrix:


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
am1 am2 · · · amn bm


Definition 7 (Elementary row operations) The following row operations on a matrix
are called elementary row operations:

1. Interchange two rows

2. multiply a row by a nonzero real number

3. Replace a row by its sum with a multiple of another row

Remark!: Elementary row operations on the augmented matrix would not change the solu-
tion set and hence create equivalent system.

Row Echelon form

Definition 8 (Row Echelon form) A matrix is said to in row echelon form if it satisfies
the following:

• the first nonzero entry in each nonzero row is 1
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• if row k does not consist entirely of zeros, then the number of leading zero entries in
row k + 1 is greater than the number of leading zero entries in row k,

• if there are rows whose entries are all zero, then they are below the rows having nonzero
entries

Theorem 2 Every matrix can be put into row echelon form by using elementary row operation
1,2 and 3.

Definition 9 (Gaussian elimination) The process of using row operations to transform a
linear system into one whose augmented matrix is in row echelon form is called Gaussian
elimination

Terminology 3 by lead variables we define the unknowns corresponding to the first nonzero
elements in each row of the roe echelon form. By free variables we define all other unknowns.

Definition 10 (reduced row echelon form) A matrix is said to be in reduced row echelon
form if the first nonzero entry in each row is the only nonzero entry in its column.

Definition 11 (Gauss-Jordan reduction) The process of transforming a matrix by using
elementary row operations into reduced row echelon form is called Gauss-Jordan reduction

Matrix arithmetic

Definition 12 Let m,n be natural numbers. An m×n matrix is an arrangement of real
numbers in m rows and n columns.

The uppercase letter is used to define a matrix. The lowercase letter, instead, is used to define
the corresponding value in the matrix=> aij i =row, j =column.

Terminology 4 Notation:

• Rm×n denotes the set of all m× n matrices with real entries;

• Rn denotes the set of all n-column vectors with real entries

• ~ai denotes the ith row of A

• aj denotes the jth row of A

Definition 13 A Column vector is a matrix with a single column. A Row vector [~ai] is
a matrix with a single row.

Definition 14 (Scalar multiplication) If A is an m × n matrix and α is a scalar, then
α ·A is the m× n matrix defined by αA = (α · aij

Definition 15 If A and B are both m×n matrices, then the sum A+B is the m×n matrix
defined by A+B = (aij + bij)
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Matrix multiplication

Consider an m× n linear system, we can written it in the compact form Ax = B where:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 x =


x1
x2
...
xn

 B =


b1
b2
...
bn


Definition 16 If ~a is an n-row vector and x is an n-column vector, then the scalar product
~ax is the scalar define by

~ax =
[
a1 a2 · · · an

]

x1
x2
...
xn

 =
[
a1x1 + a2x2 + · · ·+ anxn

]

Definition 17 Assume A is an m×n matrix and B n×p matrix. Then AB is the m×p
matrix, whose entries are defined by:

cij = ai1b1j + ai2b2j + ...+ ainbnj = ~aibj =
n∑
k=1

aikbkj

Then:

a. The number of columns of A must be equal the numbers of rows of B;

b. If A is m×n and B is n×p, then AB will be m×p.

c. The matrix multiplication is associative

Definition 18 Let A be a square matrix. For each K ∈ N, we define:
Ak = A · · ·A for k times.

Matrix algebra

Definition 19 (Transpose) The transpose of an an m × n matrix A is the n ×m matrix
B = (bij) define by bij = aji. The transpose of A is denoted by AT

Definition 20 (a symmetric square matrix) A square matrix is called symmetric if AT =
A
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Definition 21 (Identity matrix) The n×n identity matrix is the matrix In = (δij) where

δij =

{
1 if i = j

0 otherwise

Remark! InA = A for all A ∈ Rn×p

Definition 22 (nonsingularity and inverse matrix) An n × n matrix A is said to be
non-singular or invertible if there exists an n× n matrix B such that

AB = BA = In

The matrix B is said to be the multiplicative inverse of A. We say that A is singular if it
does not have a multiplicative inverse

Remark! Suppose that B and C are both inverse of A. Then, we have

B = BI = B(AC) = (BA)C = IC = C

therefore, a matrix can have at most one inverse. We will denote the inverse of a non-singular
matrix A by A−1

Theorem 3 If A and B are non-singular matrices, then AB is also non-singular and (AB)−1 =
B−1A−1

Elementary Matrices

Definition 23 (Type I) An elementary matrix of type 1 is matrix obtained by interchanging
two rows of I.

Definition 24 (Type II) An elementary matrix of type II is matrix obtain by multiplying
a row of I by a non-zero number

Definition 25 (Type III) An elementary matrix of type III is matrix obtain from I by
adding a multiple of one row to another row.

Theorem 4 (non-singularity of elementary matrices) If E is an elementary matrix,
then E is non-singular and E−1 is an elementary matrix of the same type.

Definition 26 (Row equivalence) A matrix B is row equivalent A if there exist elementary
matrices E1, E2, ..., Ek such that B = EkEk−1 · · ·E2E1A

Remark! If B is row equivalent to A is row equivalent to B: symmetric. Moreover, its
transetivety

Computation: Transform the matrix [A I] into reduced row echelon form. If A is nonsin-
gular then you will obtain [I A−1]:

Ek · · ·E1[A I] = [I A−1]

Theorem 5 Let A be a square matrix. Then the following statements are equivalent:
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a. A is non-singular

b. Ax = 0 has only the trivial solution

c. A is row equivalent to I

Theorem 6 (Uniqueness of solution to linear square system) The linear system Ax =
b of n equations in n unknowns has a unique solution if and only if A is non-singular

Definition 27 (Triangular matrices) A square matrix A is said to be

a. upper triangular if aij = 0 for i > j

b. lower triangular if aij=0 for j > i

c. triangular if either upper ot lower triangular

d. diagonal if it is upper triangular and lower triangular

e. strict upper(lower) triangular if is upper(lower) triangular and every diagonal entry is
nonzero

Definition 28 (LU factorization) If a square matrix A can be reduced to strict upper tri-
angular form by using only row operation III, then it can be written as a product of a Lower
and Upper triangular matrix. Such a factorization is called LU factorization

Partitioned matrices

Let A be a n× n matrix and B be n× p matrix.

• if B = [B1 B2] where B1 ∈ Rn×q and B2 ∈ Rn×(p−q):

AB = A[B1 B2] = [AB1 AB2]

• if A =

[
A1

A2

]
where A1 ∈ Rk×n and A2 ∈ R(m−k)×n

AB =

[
A1

A2

]
B =

[
A1B
A2B

]

• if A = [A1 A2] where A1 ∈ Rm×r and A2 ∈ Rm×(n−r and B =

[
B1

B2

]
where B1 ∈ Rr×p

and B2 ∈ R(n−r)×p:

AB =
[
A1 A2

] [B1

B2

]
= A1B1 +A2 +B2

Therefore, you can perform the multiplication as the matrix were scalar.
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Determinants

Let A = (aij) be an n × n matrix and let Mij denote the (n − 1) × (n − 1) matrix obtained
from A by deleting the row and column containing aij

Definition 29 The determinant of an n × n matrix A, denoted by det(A), is scalar defined
recursively by

det(A) =

{
a11 if n = 1

a11A11 + a12A12 + · · ·+ a1nA1n if n > 1

where Aij = (−1)i+jdet(Mij)

Terminology 5

• det(Mij) is called the minor of aij

• Aij is called the cofactor of aij

• det(A) = a11A11 + a12A12 + · · ·+ a1nA1n is called the cofactor expansion

Theorem 7 if A ∈ Rn×n with n ≥ 2, then det(A) can be expressed as a cofactor expansion
along any row or any column of A, that is

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin

= a1jA1j + a2jA2j + · · ·+ anjAnj

Note:|A| = det(A)

Theorem 8 Let A be a square matrix. Then, the following statements hold:

a. If A has a zero row or zero column, then det(A) = 0

b. if A has two identical rows or two identical columns, then det(A) = 0

c. det(AT ) = det(A)

d. if A is a triangular matrix, then det(A) equals the product of its diagonal elements

Theorem 9 Let A be an nn matrix. if i 6= j, then ai1Aj1 + ai2Aj2 + · · ·+ ainAin = 0
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Properties of Determinants

In summation, if E is an elementary matrix, then

det(EA) = det(E)det(A)

where

det(E) =


−1 if E is of type I

α 6= 0 if E is of type II

1 if E is of type III

Observation: since det(BT ) = det(B), we have

det(AE) = det((AE)T ) = det(ETAT ) = det(ET )det(AT ) = det(E)det(A)

Theorem 10 A square matrix A is nonsigular if only if det(A) 6= 0

Theorem 11 If A and B are n× n matrices, then

det(AB) = det(A)det(B)

Definition 30 Let A be an n×n matrix. Its adjoint is defined by (where Aij = (−1)i+jdet(Mij))

adjA =


A11 A21 · · · An1
A12 A22 · · · An2

...
...

. . .
...

A1n A2n · · · Ann


Fact:

ai1Aj1 + ai2Aj2 + · · ·+ ainAjn =

{
det(A) if i = j

0 if i 6= j

Note: A(adj(A)) = det(A)I. If det(A) 6= 0 then:

A−1 =
1

det(A)
adjA

Theorem 12 (Cramer’s rule) Let A ∈ Rn×n and let b ∈ Rn. Let Ai be the matrix obtained

from A by replacing the ith column by b. If x is the unique solution of Ax = b, then x1 = det(Ai)
det(A)

for i = 1, 2, ..., n

Vectors Spaces

Definition 31 (Vector spaces) Let V be a set and F be the set of scalars (R or C). Also,
let

⊕ : V × V → V and � : F × V → V

Be, respectively addition and scalar multiplication operations, that is

x ∈ V and y ∈ V ⇒ x⊕ y ∈ V
α ∈ F and x ∈ V ⇒ α� x ∈ V

We say that (V, F,⊕,�) form a vector space if the following axioms are satisfied:
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A1. x⊕ y = y ⊕ x for all x, y ∈ V

A2. (x⊕ y)⊕ z = x⊕ (y ⊕ z) for all x, y, z ∈ V

A3. There exists an element 0 ∈ V such that x⊕ 0 = x for all x ∈ V

A4. For each x ∈ V , there exists an element −x ∈ V such that x⊕ (−x) = 0

A5. α� (x⊕ y) = (α� x)⊕ (α� y) for each scalar α and any x, y ∈ V

A6. (α+ β)� x = (α� x)⊕ (β � x) for any scalar α, β and any x ∈ V

A7. (αβ)� x = α� (β � x) for any scalars α, β and any x ∈ V

A8. 1� x = x for all x ∈ V

Definition 32 (The vector space C[a,b]) Let C[a, b] denote the set of all real-valued func-
tions that are defined and continuous on the closed interval [a, b]. Let f, g ∈ C[a, b] and α ∈ R

(f ⊕ g)(x) := f(x) + g(x) for all x ∈ [a, b]

(α� f)(x) := αf(x) for all x ∈ [a, b]

Definition 33 (The Vector Space Pn) Let Pn denote the set of all polynomials of degree
less than n.

Theorem 13 If V is a vector space and x ∈ V , then

i. 0� x = 0

ii. x⊕ y = 0⇒ y = −x

iii. (−1)� x = −x

Notation: We write x+ y and x meaning x⊕ y and α� x

Definition 34 (subspace) Let S be a subset of a vector space V . We say that S is a
subspace of V if

• S is nonempty

• x ∈ S and α ∈ F ⇒ αx ∈ S

• x ∈ S and y ∈ S ⇒ x+ y ∈ S

Observation:

• {0} and V are subspaces of V

• All other subspaces of V are refereed to as proper subspaces

• We refer to {0} as the zero subspace

• If S is a subspace, then 0 ∈ S
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Null Space

Let A be an n×n matrix. Let N(A) denote the set of all solution to the homogeneous system
Ax = 0, thus

N(A) = {x ∈ Rn|Ax = 0}

Therefore, N(A) is a subspace of Rn. That is, the set all solutions of the homogeneous system
Ax = 0 forms a subspace of Rn. The subspace N(A) is called the Null space of A

Span

Definition 35 (Span) Let v1, v2, ..., vn be vectors in a vector space V

• For given scalars α1, α2, ..., αn, a sum of the form

α1v1 + α2v2 + · · ·+ αnvn

is called a linear combination of v1, v2, ..., vn

• The set of all linear combinations of v1, v2, ..., vn is called the span of v1, v2, ..., vn and
is denoted by span(v1, v2, ..., vn). Alternatively,

span(v1, v2, ..., vn) = {α1v1 + α2v2 + · · ·+ αnvn|α1, α2, ..., αn scalars}

Theorem 14 (span of vectors is a subspace) Let V be a vector space and v1, v2, ..., vn ∈
V , then span(v1, v2, ..., vn) is a subspace

Definition 36 (spanning set) The set {v1, v2, ..., vn} is a spanning set for V if every vector
of V can be written as a linear combination of the vectors v1, v2, ..., vn. In other words, if
span(v1, v2, ..., vn) = V

Terminology:

• We say that span(v1, v2, ..., vn) is spanned by v1, v2, ..., vn

• In case {v1, v2, ..., vn} is a spanning set for V , we say that the vectors v1, v2, ..., vn span
V

Theorem 15 Let v1, v2, ..., vn belong to a vector space V

a. if v1, v2, ..., vn span V and one of them can be written as a linear combination of the
other n− 1 vectors, then those n− 1 vectors span V

b. One of the vectors v1, v2, ..., vn is a linear combination of the other n−1 vectors if and
only if there exist scalars, c1, c2, ..., cn, not all zero, such that

c1v1 + c2v2 + · · ·+ cnvn = 0

Definition 37 (linear independence) The vectors v1, v2, ..., vn in a vector space V are
said to be
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• linearly independent if

c1v1 + c2v2 + · · ·+ cnvn = 0

implies c1 = c2 = · · · = cn = 0

• linearly dependent if there exists scalars c1, c2, ..., cn not all zero, such that

c1v1 + c2v2 + · · ·+ cnvn = 0

Theorem 16 (linear dependence/independence in Rn) let x1, x2, ..., xn be vectors in
Rn and let X = [x1 x2 · · · xn]. The vectors x1, x2, ..., xn are linearly dependent if and
only if X is singular.

Theorem 17 Let v1, v2, ..., vn be vectors in a vector space V . Every vector in span(v1, v2, ..., vn)
can be written uniquely as a linear combination of v1, v2, ..., vn if and only if v1, v2, ..., vn are
linearly independent

Basis and dimension

Definition 38 (basis) The vectors v1, v2, ..., vn form a basic for a vector space V if

a. v1, v2, ..., vn are linearly independent

b. v1, v2, ..., vn span V

Theorem 18 let {v1, v2, ..., vn} be a spanning set for a vector space V and m be a positive
integer with m > n. Then, any collection of m vectors in V is linearly dependent

Corollary 1 if both {v1, v2, ..., vn} and {v1, v2, ..., vm} are bases for a vectors space V , then
n = m

Definition 39 (Dimension) let V be a vector space

• If V has a basis consisting of n vectors, we say that V has dimension n

• The subspace {0} of V has dimension 0

• V is said to be finite dimensional if there is a finite set of vectors that spans V

• Otherwise, we say that V is infinite dimensional.

Theorem 19 Let V be a vector space of dimension n > 0. Then,

a. any set of n linearly independent vectors spans V

b. any n vectors that span V are linearly independent

c. no set of fewer than n vectors can span V

d. any subset of fewer than n lin. ind. vectors can be completed to form a basis for V

e. any spanning set with more than n vectors can be trimmed down to form a basis for V
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Definition 40 (coordinates and coordinate vectors) Let V be a vector space and E =
(v1, v2, ..., vn) be an ordered basis for V . If x ∈ V , then we have

x = c1v1 + c2v2 + · · ·+ cnvn

where c1, c2, ..., cn are scalars. As such can associate with each vector x a unique vector

c =


c1
c2
...
cn

 ∈ Rn

This vector c is called coordinate vector of x with respect to E and is denoted by:

[x]E

The scalars c1, c2, ..., cn are called the coordinates of x relative to E

Row and Column spaces

Definition 41 (row/column spaces) Let A ∈ Rm×n. The subspace of R1×n spanned by
the rows of A is called the row space of A

The subspace of Rm×1 spanned by the columns of A is called the column space of A

Theorem 20 Two row equivalent matrices have the same row space

Definition 42 (rank of a matrix) The rank of a matrix A, denoted by rank(A), is the
dimension of the row space of A

Observation:
To determine the rank of a matrix, we can first transform it to row echelon form. Since the
nonzero rows of the echelon form is a basis for the row space, the number of nonzero rows is
the rank.
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Theorem 21 (consistency theorem for linear systems) A linear system Ax = b is con-
sistent if and only if b is a linear combination of the columns of A

Theorem 22 A linear system Ax = b is consistent if and only if b is in the column space of
A

Theorem 23 (linear systems) Let A ∈ Rm×n:

a. The linear system Ax = b is consistent for every b ∈ Rm if and only if the column
vectors of A span Rm

b. The linear system Ax = b has at most one solution for every b ∈ Rm if and only if
the column vectors of A are linearly independent

Definition 43 (nullity of a matrix) The dimension of the null space of A is called nullity
of A and is denoted by null(A)

Theorem 24 (rank-nullity theorem) If A ∈ Rm×n, the rank of A plus nullity of A equals
n

Note: dimN(A) = n− r where n = # rows, and r = # lead variables. That is, N(A) = the
number of free variables

Theorem 25 For every matrix, the dimension of the row space and that of the column space
are equal

Definition 44 The Range of A ∈ Rm × n is denoted by

R(A) := {b ∈ Rm|b = Ax for some x ∈ Rn}

Note: The range of A is the column space of A

Linear Transformation

Definition 45 A mapping L from a vector space V into a vector space W is said to be a
linear trasformation if

L(αx+ βy) = αL(x) + βL(y)

for all vectors x, y ∈ V and scalars α, β

Terminology:

• L : V →W a mapping L from a vector space V into a vector space W

• L : V → V ⇒ L is a operator

Note:
Ck[a, b] := {f : [a, b]→ R|fk ∈ C[a, b]}

Example:
Let A ∈ Rm×n and LA : Rn → Rm given by LA(v) = Av for v ∈ Rn is linear:

LA(αx+ βy) = A(αx+ βy) = αAx+ βAy = αLA(x) + βLA(y)

Observation:
Let L : V →W be a linear transformation. Then,
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a. L(0V ) = 0W

b. L(−v) = −L(v) for all v ∈ V

c. v1, v2, ..., vn are vectors of V and α1, α2, ..., αn are scalars, then

L(α1, v1 + α2v2 + · · ·+ αnvn) = α1L(v1) + α2L(v2) + · · ·+ αnL(vn)

Definition 46 Let L : V →W be a linear transformation. The karnel of L is defined by

ker(L) := {v ∈ V |L(v) = 0W }

Definition 47 Let L : V →W be a linear transformation and let S be a subspace of V . The
image of S under L, denoted by L(S) is defined by

L(S) := {w ∈W |w = L(v) for some v ∈ S}

The image of V,L(V ), is called the range of L

Theorem 26 if L : V → W be a linear transformation and let S be a subspace of V , then
both kerL and L(S) are subspaces

Theorem 27 (Matrix representation) Let E = (v1, v2, ..., vn) and F = (w1, w2, ..., wn)
be ordered bases for vector spaces V and W , respectively, and let L : V → W be a linear
trasformation. Define the m× n matrix A by

aj = [L(vj)]F for j = 1, 2, ..., n

Then,
[L(v)]F = A[v]E for allv ∈ V

The matrix A is called the matrix representation of L relative to the bases E and F

Theorem 28 Let V → V be a linear operator, E = (v1, v2, ..., vn) and F = (w1, w2, ..., wm)
be ordered bases for the vector space V . Also, let S be the transition matrix representing
the basis change from F to E. If A and B are the matrices representing L w.r.t E and F ,
respectively, then B = S−1AS

Definition 48 Let A and B be n× n matrices. We say that B is similar to A if there exists
a nonsingular matrix S such that B = S−1AS

Note: Similarity is symmetric

Orthogonality

Definition 49 Scalar product Let x and y be two column vectors in Rn. The product xT y
is called the scalar product of x and y

Definition 50 Length The Euclidean length of a vector x ∈ Rn is defined by

‖x‖ :=
√
xTx =

√
x21 + x22 + · · ·+ x2n
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Observation:

‖x‖ =

{√
x21 + x22 if x ∈ R2√
x21 + x22 + x23 if x ∈ R3

Definition 51 Distance The distance between two vectors x, y ∈ Rn is define as ‖x− y‖

Definition 52 Orthogonality Two vectors x, y ∈ Rn are said to be orthogonal if

xT y = 0

we write x ⊥ y

Theorem 29 Pythagorean law if x ⊥ y, then

‖x‖2 + ‖y‖2 = ‖x+ y‖2

Theorem 30 angle between two vectors in R2 or R3 if x and y are two vectors in R2

or R3 and θ is the angle between them, then

xT y = ‖x‖ ‖y‖ cos θ

Theorem 31 Cauchy-Schwartz inequality Let x and y be two vectors in Rn. Then,

|xT y| ≤ ‖x‖‖y‖

Observation: The angle between vectors

−1 ≤ xT y

‖x‖‖y‖
≤ 1

Definition 53 Orthogonal subspaces Two subspaces X and Y of Rn are said to be or-
thogonal if xT y = 0 for every x ∈ X and y ∈ Y

Definition 54 Orthogonal complement Let X be a subspace of Rn. Define

X⊥ := {y ∈ Rn|xT y = 0 for all x ∈ X}

The set X⊥ is called orthogonal complement of X

Observation:

• if X ⊥ Y , then X ∩ Y = {0}

• X⊥ is a subspace

Theorem 32 Fundamental subspace theorem Let A ∈ Rm×n. Then,

N(A) = R(AT )⊥ and N(AT ) = R(A)⊥

Observation:

• The column space of R(AT ) is essentially the same as the row space of A
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• The N(A) contains all the vectors that are ⊥ to the row space. That is, every x in the
nullspace of A is orthogonal to the row space of A

• Hence, N(A) ⊥ R(AT ). That is, N(A) = R(AT )⊥

• In the same way N(AT ) ⊥ R(A). That is, every y in the nullspace of AT is orthogonal
to the column space of A, thus N(AT ) = R(A)⊥

• By knowing that the dimension of N(A) is n − r, we deduce that the dimension of
R(AT ) is r.

• In the same way by know that the dimension of N(AT ) is m− r, then the dimension of
R(A) is r

Theorem 33 If S is a subspace of Rn, then dim(S)+dim(S⊥) = n. Moreover, if {x1, ..., xr}
is a basis for S and {xr+1, ..., xn} is a basis for S⊥, then {x1, ..., xn} is a basis for Rn

Definition 55 Let U and V be subspaces of the vector space W . If each w ∈ W can be
written uniquely as a sum of u + v where u ∈ U and v ∈ V , then we say that W is a direct
sum of U and V and write W = U ⊕ V

Theorem 34 Direct sum If S is a subspace of Rn, then Rn = S ⊕ S⊥

Theorem 35 If S is a subspace of Rn, then (S⊥)⊥ = S

Least squares problems

A standard technique in mathematical and statistical modeling is to find a least squares fit to
a set of data points in the plane. The least squares curve is usually the graph of a standard
type of function, such as a linear function, a polynomial, or a trigonometric polynomial. Since
the data may include errors in measurement or experiment-related inaccuracies, we do not
require the curve to pass through all the data points. Instead, we require the curve to provide
an optimal approximation in the sense that the sum of squares of errors between the y values
of the data points and the corresponding y values of the approximating curve are minimized.
Given A ∈ Rm × n with m > n and b ∈ Rm. For each x ∈ Rn, define the residual

r(x) = Ax− b

The distance between b and Ax is given by

‖b−Ax‖ = ‖r(x)‖

We wish to find a vector x̂ ∈ Rn for which ‖r(x̂)‖ will be a minimum. Thus,

‖r(x̂)‖ ≤ ‖r(x)‖ (1)

for all x ∈ Rn. In other words we want to to minimize ‖r(x)‖, equivalently ‖r(x)‖2.
A vector x̂ satisfying (1) is said to be a least squares solution of the system Ax = b.

Is there always a least squares solution? Yes, its has it is state in the following theorem

16 /faculty of Science and Engineering



University of Groningen Linear Algebra 1/Zambelli Lorenzo

Theorem 36 Let S be subspace of Rm. For every b ∈ Rm, there is a unique vector p of S
that is closet to b in the sense that

‖b− p‖ < ‖b− y‖

for all y 6= p in S. Moreover, a vector p is S is the closet to a given vector b if and only if
b− p ∈ S⊥

Terminology:
The Vector p is said to the projection of b onto S
Vector projection of x onto y:

p =
xT y

yT y
y

Scalar projection of x onto y

α =
xT y

‖y‖
Now lets prove Theorem 36:

Theorem 34 (Direct sum) implies that each b ∈ Rm can be written uniquely as a sum b = p+z
where p ∈ S and z ∈ S⊥. If y 6= p in S,

‖b− y‖2 = ‖(b− p) + (p− y)‖2

Since b− p = z ∈ S⊥ and p− y ∈ S,

‖b− y‖2 = ‖b− p‖2 + ‖p− y‖2

due to Pythagorean law. Since y 6= p, ‖p− y‖ > 0. As such the theorem holds.

Observation:
If x̂ is a least squares solution of the system Ax = b and p = Ax̂, then p is the vector in R(A)
that is the closet to b

Moreover, in a solution of a least squares problem we can observe the following:

• In view of the previous observation, take S = R(A) in the theorem 36

• a vector x̂ is a least squares solution of the system Ax = b if and only if

• p = Ax̂ is the vector in R(A) that is closest to b if and only if

• b− p = b−Ax̂ ∈ R(A)⊥ = N(AT ) if and only if

• AT (b−Ax̂) = 0 if and only if

• ATAx̂ = AT b that is called the normal equation

Theorem 37 Uniqueness of least squares solution If A ∈ Rm×n is of rank(A) = n,
then the normal equations

ATAx̂ = AT b

have a unique solution
x̂ = (ATA)−1AT b
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x x1 x2 · · · xm
y y1 y2 · · · ym

Proof: It is enough to prove that ATA is nonsingular:

• Let z be a vector s.t ATAz = 0

• Then, we have 0 = zTATAz = ‖Az‖2

• This means that Az = 0

• Since rank(A) = n, the coulumn of A are linearly independent

• Therefore, we get z = 0

• Consequently, ATA is nonsingular

How to solve a least squares problem:

Given a table of data we wish to find a linear function

y = c0 + c1x

that best fits the data in the least squares sense. If we require that

yi = c0 + c1xi for i = 1, ...,m

we get a system of m equations in two unknowns
1 x1
1 x2
...

...
1 xm


[
c0
c1

]
=


y1
y2
...
ym


The linear function whose coefficients are the least squares solution is said to be the best least
squares fit to the date by a linear function.

If the data do not resemble a linear function, we could usa a higher degree polynomial.
To find the coefficients c0, c1, ..., cn of the best least squares fit to the data

x x1 x2 · · · xm
y y1 y2 · · · ym

by a polynomial of degree n, we must find the least squares solution the system
1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
1 xm x2m · · · xnm



c0
c1
...
cn

 =


y1
y2
...
ym
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Eigenvalues

Definition 56 Eigenvalues/eigenvectors Let A be a square matrix. A scalar λ is said to
be an eigenvalue of A if there exists a nonzero vector x such that

Ax = λx

The vector x is said to be an eigenvector corresponding to λ

Note: Powers of a matrix have the same eigenvectors
Proof:

A2x = A(λx) = λ(Ax) = λ2x Anx = λnx

Observations: The following statements are equivalent:

• λ is an eigenvalue of A

• (λI −A)x = 0 has a nontrivial solution

• N(λI −A) 6= {0}

• (λI −A) is singular

• det(λI −A) = 0

Terminology:

• If λ is an eigenvalue of A, then N(λI −A) is called eigenspace corresponding to λ

• pA(λ) = det(λI −A) is called the characteristic polynomial

• if A ∈ Rn×n, then pA(λ) is a polynomial of degree n

Observations:

• If A is a square matrix with real entitries, then its characteristic polynomial has real
coefficients

• As such, all its nonreal eigenvalues occur in conjugate pairs

• Also, the eigenvectors occur in conjugate pairs

Az = λz ⇒ Az̄ = Āz̄ = Āz = λ̄z

Note: Assume that we have a symmetric matrix S = ST , then the eigenvectors of S are
orthogonal.
Proof:

• Sx = λx Sy = αy λ 6= α ST = S.

• Transponse to xTST = λxT and use ST = S thus xTSy = λxT y

• We can also multiply Sy = αy by xT , thus xTSy = αxT y

• Nowe λxT y = αxT y. Since α 6= λ, xT y must be zero
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The product and Sum of the Eigenvalues

pA(λ) = det(λI −A) =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n

...
...

...
−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣
= λn + pn−1λ

n−1 + · · ·+ p1λ+ p0

= (λ− λ1)(λ− λ2) · · · (λ− λn)

= λn − (λ1 + λ2 + · · ·+ λn)λn−1 + · · ·+ (−1)nλ1λ2 · · ·λn

If we expand it

pA(λ) = (λ− a11)(λ− a22) · · · (λ− ann) + q(λ) where deg(q) ≤ n− 2

= λn − (a11 + a22 + · · ·+ ann)λn−1 + q̄(λ) where deg(q̄) ≤ n− 2

tr(A) = λ1 + λ2 + · · ·+ λn

pA(0) = p0 = det(−A) = (−1)ndet(A) = (−1)nλ1λ2 · · ·λn
det(A) = λ1λ2 · · ·λn

Theorem 38 Let A and B be n × n matrices. If A and B are similar, then they have the
same characteristic polynomial and hence the same eigenvalues

Diagonalization

Definition 57 A squares matrix A is said to be diagonalizible if there exits a nonsingular
matrix X and a diagonal matrix D such that

X−1AX = D (2)

In case A is diagonalizable, we say that X diagonalizes A if (2) holds

Observation: X−1AX = D ⇔ AX = XD ⇔ A = XDX−1.
From this follows that Ak = XDkX−1

Theorem 39 An n × n matrix is diagonalizable if and only if it has n linearly independent
eigenvectors

Observation: If A is diagonalizable, that is X−1AX = D for a nonsingular matrix X and a
diagonal matrix D, then

• the columns vectors of X are eigenvectors of A

• the diagonal elements of D are eigenvalues of A

• X and D are not unique

Theorem 40 If λ1, λ2, ..., λk are distinct eigenvalues (λi 6= for i 6= j) of A with the corre-
sponding eigenvectors x1, x2, ..., xk, then x1, x2, ..., xk are linearly independent

Theorem 41 Any squares matrix with distinct eigenvalues is diagonalizable
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Linear differential equations

A system of linear differential equations is of the form

x′(t) = Ax(t)

where ’ denotes the derivative w.r.t time variable t, x : R → Rn is a vector-valued function,
and A is an n× n matrix.

Definition 58 Initial valued problem An initial valued problem amounts to finding a so-
lution to

x′(t) = Ax(t) x(0) = x0

for a given n× n matrix A and given n-vector x0
The solution of the initial value problem is given by x(t) = etAx0

Definition 59 Matrix exponential

eA := I +A+
1

2!
A2 +

1

3!
A3 + · · ·

Therefore, we deduce that if A is diagonizable then

Ak = XDkX−1 for k = 1, 2, ...

eA = X

(
I +D +

1

2!
D2 +

1

3!
D3 + · · ·

)
X−1

= XeDX−1

That is, the initial value problem is:

y′1(t) = a11y1 + · · ·+ a1nyn
...

yn(t) = an1y1 + · · ·+ annyn

Where we define

A =

a11 · · · a1n
...

...
...

an1 · · · ann


and

Y ′(t) = AY Y (0) = Y0

Which is it
Y ′ = etAY0 (3)

that is

y(t) = c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cne
λntxn (4)
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where x1, ..., xn are the eigenvectors corresponding to the eigenvalues λ1, ..., λn and c1, ..., cn
are constant. Then, y(t) is the solution of the system.

If A is diagonizable we can write (3) in the form

Y = XetDX−1Y0

= c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cne
λntxn (c = X−1Y0)

Theorem 42 Let A and B be n × n matrices. If A and B are similar, that is B = S−1AS
for some n× n nonsingular matrix S, then

eB = S−1eAS

If a given matrix A is similar to a diagonal matrix D, then A = S−1DS for some nonsingular
matrix S and eA = S−1eDS

22 /faculty of Science and Engineering


